Bayesian

使用貝葉斯方法或頻率論方法是多級建模更簡單、更實用還是更方便?

  • May 11, 2014

這個社區 wiki 頁面中,@probabilityislogic 斷言的兩次贊成的評論斷言“多級建模對於貝葉斯來說絕對更容易,尤其是在概念上。” 這是真的嗎?如果是/不是,為什麼?

我同意馬修的觀點。我想補充兩點意見。

有幾種方法可以編寫多級模型,但主要的替代方法是水平和組合形式。如您所知,您可以編寫一個簡單的多級模型:

或作為:

在第一種形式中,您以相同的方式對所有係數進行建模,並且在 BUGS、JAGS 或 Stan 中編寫貝葉斯模型(幾乎)很簡單,您可以輕鬆添加第三層。使用混合效應軟件(PROC MIXED、lmer 等)時,您必須記住,每當您試圖通過二級預測器預測斜率的變化時,您必須包括跨級交互項(一級和 2 級預測變量)在公式的固定效應部分中,並且僅在微不足道的情況下才容易定義隨機效應部分。這就是為什麼有人說多級建模和貝葉斯分析之間存在很強的正式關係(參見 Kreft 和 De Leeuw,介紹多級建模,Sage,1998,§1.4.7)。 但是,我經常使用非貝葉斯工具來初步了解並比較結果。此外,我不會說使用 PROC MIXED 或 lmer 是“錯誤的”或“過時的”

真正的問題是,當二級單元的數量很少時,不能使用頻率論方法

幾位作者已經強調了這一點,例如 Gelman 和 Hill,Data Analysis Using Regression and Multilevel/Hierachical Models,Cambridge University Press,2007,§16.1(“為什麼你應該學習 BUGS”:“當組的數量很少或多級模型很複雜 […] 可能沒有足夠的信息來精確估計方差參數”通過頻率論方法)或 Raudenbush 和 Bryk,分層線性模型,Sage,2002 年,第 1 章。13(“高級單位的數量可能很少,數據可能不平衡。在這些設置中,完全貝葉斯有明顯的優勢”。)

Mark L. Bryan 和 Stephen P. Jenkins最近的一篇論文Regression analysis of country effects using multilevel data: a warnary tale , Institute for Social and Economic Research, WP2013-14)提出了蒙特卡羅模擬分析,表明在為了得出可靠的估計,用戶需要至少 25 組線性模型和至少 30 組 logit 模型。他們的建議之一是“超越經典(頻繁)統計,更多地使用貝葉斯估計和推理方法,因為當國家很少時,它們似乎表現更好。”

引用自:https://stats.stackexchange.com/questions/97233

comments powered by Disqus