與 MCMC Metropolis-Hastings 變體混淆:Random-Walk、Non-Random-Walk、Independent、Metropolis
在過去的幾周里,我一直在嘗試理解 MCMC 和 Metropolis-Hastings 算法。每次我認為我理解它時,我意識到我錯了。我在網上找到的大多數代碼示例都實現了與描述不一致的東西。即:他們說他們實現了 Metropolis-Hastings,但他們實際上實現了隨機遊走大都會。其他人(幾乎總是)默默地跳過黑斯廷斯校正比率的實施,因為他們使用的是對稱提議分佈。實際上,到目前為止,我還沒有找到一個簡單的例子來計算比率。這讓我更加困惑。有人可以給我以下代碼示例(任何語言):
- 具有 Hastings 校正比率計算的 Vanilla Non-Random Walk Metropolis-Hastings 算法(即使在使用對稱提議分佈時最終結果為 1)。
- Vanilla Random Walk Metropolis-Hastings 算法。
- Vanilla Independent Metropolis-Hastings 算法。
不需要提供 Metropolis 算法,因為如果我沒記錯的話,Metropolis 和 Metropolis-Hastings 之間的唯一區別是第一個總是從對稱分佈中採樣,因此它們沒有 Hastings 校正比率。無需對算法進行詳細解釋。我確實了解基礎知識,但我對 Metropolis-Hastings 算法的不同變體的所有不同名稱以及如何在 Vanilla 非隨機遊走 MH 上實際實現 Hastings 校正率感到困惑。請不要復制部分回答我的問題的粘貼鏈接,因為我很可能已經看過它們。這些鏈接使我感到困惑。謝謝你。
給你 - 三個例子。為了使邏輯更清晰(我希望),我已經使代碼的效率低於實際應用程序中的效率。
# We'll assume estimation of a Poisson mean as a function of x x <- runif(100) y <- rpois(100,5*x) # beta = 5 where mean(y[i]) = beta*x[i] # Prior distribution on log(beta): t(5) with mean 2 # (Very spread out on original scale; median = 7.4, roughly) log_prior <- function(log_beta) dt(log_beta-2, 5, log=TRUE) # Log likelihood log_lik <- function(log_beta, y, x) sum(dpois(y, exp(log_beta)*x, log=TRUE)) # Random Walk Metropolis-Hastings # Proposal is centered at the current value of the parameter rw_proposal <- function(current) rnorm(1, current, 0.25) rw_p_proposal_given_current <- function(proposal, current) dnorm(proposal, current, 0.25, log=TRUE) rw_p_current_given_proposal <- function(current, proposal) dnorm(current, proposal, 0.25, log=TRUE) rw_alpha <- function(proposal, current) { # Due to the structure of the rw proposal distribution, the rw_p_proposal_given_current and # rw_p_current_given_proposal terms cancel out, so we don't need to include them - although # logically they are still there: p(prop|curr) = p(curr|prop) for all curr, prop exp(log_lik(proposal, y, x) + log_prior(proposal) - log_lik(current, y, x) - log_prior(current)) } # Independent Metropolis-Hastings # Note: the proposal is independent of the current value (hence the name), but I maintain the # parameterization of the functions anyway. The proposal is not ignorable any more # when calculation the acceptance probability, as p(curr|prop) != p(prop|curr) in general. ind_proposal <- function(current) rnorm(1, 2, 1) ind_p_proposal_given_current <- function(proposal, current) dnorm(proposal, 2, 1, log=TRUE) ind_p_current_given_proposal <- function(current, proposal) dnorm(current, 2, 1, log=TRUE) ind_alpha <- function(proposal, current) { exp(log_lik(proposal, y, x) + log_prior(proposal) + ind_p_current_given_proposal(current, proposal) - log_lik(current, y, x) - log_prior(current) - ind_p_proposal_given_current(proposal, current)) } # Vanilla Metropolis-Hastings - the independence sampler would do here, but I'll add something # else for the proposal distribution; a Normal(current, 0.1+abs(current)/5) - symmetric but with a different # scale depending upon location, so can't ignore the proposal distribution when calculating alpha as # p(prop|curr) != p(curr|prop) in general van_proposal <- function(current) rnorm(1, current, 0.1+abs(current)/5) van_p_proposal_given_current <- function(proposal, current) dnorm(proposal, current, 0.1+abs(current)/5, log=TRUE) van_p_current_given_proposal <- function(current, proposal) dnorm(current, proposal, 0.1+abs(proposal)/5, log=TRUE) van_alpha <- function(proposal, current) { exp(log_lik(proposal, y, x) + log_prior(proposal) + ind_p_current_given_proposal(current, proposal) - log_lik(current, y, x) - log_prior(current) - ind_p_proposal_given_current(proposal, current)) } # Generate the chain values <- rep(0, 10000) u <- runif(length(values)) naccept <- 0 current <- 1 # Initial value propfunc <- van_proposal # Substitute ind_proposal or rw_proposal here alphafunc <- van_alpha # Substitute ind_alpha or rw_alpha here for (i in 1:length(values)) { proposal <- propfunc(current) alpha <- alphafunc(proposal, current) if (u[i] < alpha) { values[i] <- exp(proposal) current <- proposal naccept <- naccept + 1 } else { values[i] <- exp(current) } } naccept / length(values) summary(values)
對於香草採樣器,我們得到:
> naccept / length(values) [1] 0.1737 > summary(values) Min. 1st Qu. Median Mean 3rd Qu. Max. 2.843 5.153 5.388 5.378 5.594 6.628
這是一個較低的接受概率,但仍然……調整提案將在這裡有所幫助,或者採用不同的提案。這是隨機遊走提案的結果:
> naccept / length(values) [1] 0.2902 > summary(values) Min. 1st Qu. Median Mean 3rd Qu. Max. 2.718 5.147 5.369 5.370 5.584 6.781
類似的結果,正如人們所希望的那樣,以及更好的接受概率(一個參數的目標是~50%。)
並且,為了完整起見,獨立採樣器:
> naccept / length(values) [1] 0.0684 > summary(values) Min. 1st Qu. Median Mean 3rd Qu. Max. 3.990 5.162 5.391 5.380 5.577 8.802
因為它不“適應”後驗的形狀,所以它往往具有最差的接受概率,並且最難針對這個問題進行調整。
請注意,一般而言,我們更喜歡尾巴較粗的提案,但這是另一個話題。