R
用於深度學習的 R 庫
我想知道是否有任何用於深度學習神經網絡的好的 R 庫?我知道有
nnet
、neuralnet
和RSNNS
,但這些似乎都沒有實現深度學習方法。我對無監督學習和監督學習以及使用 dropout 防止共同適應特別感興趣。
/edit:幾年後,我發現h20 深度學習包設計得非常好,易於安裝。我也喜歡mxnet 包,它(有點)難以安裝,但支持 covnets 之類的東西,在 GPU 上運行,而且速度非常快。
OpenSource h2o.deepLearning() 是來自 h2o.ai 的 R 深度學習包,這裡有一篇文章http://www.r-bloggers.com/things-to-try-after-user-part-1-deep-learning-與-h2o/
和代碼:https ://gist.github.com/woobe/3e728e02f6cc03ab86d8#file-link_data-r
######## *Convert Breast Cancer data into H2O* dat <- BreastCancer[, -1] # remove the ID column dat_h2o <- as.h2o(localH2O, dat, key = 'dat') ######## *Import MNIST CSV as H2O* dat_h2o <- h2o.importFile(localH2O, path = ".../mnist_train.csv") ######## *Using the DNN model for predictions* h2o_yhat_test <- h2o.predict(model, test_h2o) ######## *Converting H2O format into data frame* df_yhat_test <- as.data.frame(h2o_yhat_test) ######## Start a local cluster with 2GB RAM library(h2o) localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE, Xmx = '2g') ########Execute deeplearning model <- h2o.deeplearning( x = 2:785, # column numbers for predictors y = 1, # column number for label data = train_h2o, # data in H2O format activation = "TanhWithDropout", # or 'Tanh' input_dropout_ratio = 0.2, # % of inputs dropout hidden_dropout_ratios = c(0.5,0.5,0.5), # % for nodes dropout balance_classes = TRUE, hidden = c(50,50,50), # three layers of 50 nodes epochs = 100) # max. no. of epochs