Biostatistics
將 BMI 指數定義為體重/身高背後的統計原因是什麼22^2?
也許這個問題在醫學上有答案,但是BMI指數計算為? 為什麼不例如只是? 我的第一個想法是它與二次回歸有關。
真實數據樣本(200 個人的體重、身高、年齡和性別):
structure(list(Age = c(18L, 21L, 17L, 20L, 19L, 53L, 27L, 22L, 19L, 27L, 19L, 20L, 19L, 20L, 42L, 17L, 23L, 20L, 20L, 19L, 20L, 19L, 19L, 18L, 19L, 15L, 19L, 15L, 19L, 21L, 60L, 19L, 17L, 23L, 60L, 33L, 24L, 19L, 19L, 22L, 20L, 21L, 19L, 19L, 20L, 18L, 19L, 20L, 22L, 20L, 20L, 27L, 19L, 22L, 19L, 20L, 20L, 21L, 16L, 19L, 41L, 54L, 18L, 23L, 19L, 19L, 22L, 18L, 20L, 19L, 25L, 18L, 20L, 15L, 61L, 19L, 34L, 15L, 19L, 16L, 19L, 18L, 15L, 20L, 20L, 20L, 20L, 19L, 16L, 37L, 37L, 18L, 20L, 16L, 20L, 36L, 18L, 19L, 19L, 20L, 18L, 17L, 22L, 17L, 22L, 16L, 24L, 17L, 33L, 17L, 17L, 15L, 18L, 18L, 16L, 20L, 29L, 24L, 18L, 17L, 18L, 36L, 16L, 17L, 20L, 16L, 43L, 19L, 18L, 20L, 19L, 18L, 21L, 19L, 20L, 23L, 19L, 19L, 20L, 24L, 19L, 20L, 38L, 18L, 17L, 19L, 19L, 20L, 20L, 21L, 20L, 20L, 42L, 17L, 20L, 25L, 20L, 21L, 21L, 22L, 19L, 25L, 19L, 40L, 25L, 52L, 25L, 21L, 20L, 41L, 34L, 24L, 30L, 21L, 27L, 47L, 21L, 16L, 31L, 21L, 37L, 20L, 22L, 19L, 20L, 25L, 23L, 20L, 20L, 21L, 36L, 19L, 21L, 16L, 20L, 18L, 21L, 21L, 18L, 19L), Height = c(180L, 175L, 178L, 160L, 172L, 172L, 180L, 165L, 160L, 187L, 165L, 176L, 164L, 155L, 166L, 167L, 171L, 158L, 170L, 182L, 182L, 175L, 197L, 170L, 165L, 176L, 167L, 170L, 168L, 163L, 155L, 152L, 158L, 165L, 180L, 187L, 177L, 170L, 178L, 170L, 170L, NA, 188L, 180L, 161L, 178L, 178L, 165L, 187L, 178L, 168L, 168L, 180L, 192L, 188L, 173L, 193L, 184L, 167L, 177L, 177L, 160L, 167L, 190L, 187L, 163L, 173L, 165L, 190L, 178L, 167L, 160L, 169L, 174L, 165L, 176L, 183L, 166L, 178L, 158L, 180L, 167L, 170L, 170L, 180L, 184L, 170L, 180L, 169L, 165L, 156L, 166L, 178L, 162L, 178L, 181L, 168L, 185L, 175L, 167L, 193L, 160L, 171L, 182L, 165L, 174L, 169L, 185L, 173L, 170L, 182L, 165L, 160L, 158L, 186L, 173L, 168L, 172L, 164L, 185L, 175L, 162L, 182L, 170L, 187L, 169L, 178L, 189L, 166L, 161L, 180L, 185L, 179L, 170L, 184L, 180L, 166L, 167L, 178L, 175L, 190L, 178L, 157L, 179L, 180L, 168L, 164L, 187L, 174L, 176L, 170L, 170L, 168L, 158L, 175L, 174L, 170L, 173L, 158L, 185L, 170L, 178L, 166L, 176L, 167L, 168L, 169L, 168L, 178L, 183L, 166L, 165L, 160L, 176L, 186L, 162L, 172L, 164L, 171L, 175L, 164L, 165L, 160L, 180L, 170L, 180L, 175L, 167L, 165L, 168L, 176L, 166L, 164L, 165L, 180L, 173L, 168L, 177L, 167L, 173L), Weight = c(60L, 63L, 70L, 46L, 60L, 68L, 80L, 68L, 55L, 89L, 55L, 63L, 60L, 44L, 62L, 57L, 59L, 50L, 60L, 65L, 63L, 72L, 96L, 50L, 55L, 53L, 54L, 49L, 72L, 49L, 75L, 47L, 57L, 70L, 105L, 85L, 80L, 55L, 67L, 60L, 70L, NA, 76L, 85L, 53L, 69L, 74L, 50L, 91L, 68L, 55L, 55L, 57L, 80L, 98L, 58L, 85L, 120L, 62L, 63L, 88L, 80L, 57L, 90L, 83L, 51L, 52L, 65L, 92L, 58L, 76L, 53L, 64L, 63L, 72L, 68L, 110L, 52L, 68L, 50L, 78L, 57L, 75L, 55L, 75L, 68L, 60L, 65L, 48L, 56L, 65L, 65L, 88L, 55L, 68L, 74L, 65L, 62L, 58L, 55L, 84L, 60L, 52L, 92L, 60L, 65L, 50L, 73L, 51L, 60L, 76L, 48L, 50L, 53L, 63L, 68L, 56L, 68L, 60L, 70L, 65L, 52L, 75L, 65L, 68L, 63L, 54L, 76L, 60L, 59L, 80L, 74L, 96L, 68L, 72L, 62L, 58L, 50L, 75L, 70L, 85L, 67L, 65L, 55L, 78L, 58L, 53L, 56L, 72L, 62L, 60L, 56L, 82L, 70L, 53L, 67L, 58L, 58L, 49L, 90L, 58L, 77L, 55L, 70L, 64L, 98L, 60L, 60L, 65L, 74L, 99L, 49L, 47L, 75L, 77L, 74L, 68L, 50L, 66L, 75L, 54L, 60L, 65L, 80L, 90L, 95L, 79L, 57L, 70L, 60L, 85L, 44L, 58L, 50L, 88L, 60L, 54L, 68L, 56L, 69L), Gender = c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L)), .Names = c("Age", "Height", "Weight", "Gender"), row.names = 304:503, class = "data.frame")
這篇由 Eknoyan (2007) 撰寫的評論遠遠超出了您可能想了解的有關 Quetelet 和他發明的體重指數的內容。
簡短的版本是 BMI 看起來近似正態分佈,而僅體重或體重/身高則不是,而 Quetelet 對通過正態分佈描述“正常”人感興趣。基於人們的成長方式,也有一些第一性原理的爭論,最近的一些工作試圖將這種縮減與一些生物力學聯繫起來。
值得注意的是,BMI 的值引起了相當激烈的爭論。它確實與肥胖有很好的相關性,但體重不足/超重/肥胖的臨界值與醫療保健結果並不完全匹配。