如何在多標籤分類器上使用 scikit-learn 的交叉驗證功能
我在一個有 5 個類的數據集上測試不同的分類器,每個實例可以屬於這些類中的一個或多個,所以我使用 scikit-learn 的多標籤分類器,特別是
sklearn.multiclass.OneVsRestClassifier
. 現在我想使用sklearn.cross_validation.StratifiedKFold
. 這會產生以下錯誤:Traceback (most recent call last): File "mlfromcsv.py", line 93, in <module> main() File "mlfromcsv.py", line 77, in main test_classifier_multilabel(svm.LinearSVC(), X, Y, 'Linear Support Vector Machine') File "mlfromcsv.py", line 44, in test_classifier_multilabel scores = cross_validation.cross_val_score(clf_ml, X, Y_list, cv=cv, score_func=metrics.precision_recall_fscore_support, n_jobs=jobs) File "/usr/lib/pymodules/python2.7/sklearn/cross_validation.py", line 1046, in cross_val_score X, y = check_arrays(X, y, sparse_format='csr') File "/usr/lib/pymodules/python2.7/sklearn/utils/validation.py", line 144, in check_arrays size, n_samples)) ValueError: Found array with dim 5. Expected 98816
請注意,訓練多標籤分類器不會崩潰,但交叉驗證會崩潰。我必須如何對這個多標籤分類器執行交叉驗證?
我還編寫了第二個版本,將問題分解為訓練和交叉驗證 5 個單獨的分類器。這工作得很好。
這是我的代碼。功能
test_classifier_multilabel
是給問題的一個。test_classifier
是我的另一個嘗試(將問題分解為 5 個分類器和 5 個交叉驗證)。import numpy as np from sklearn import * from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier import time def test_classifier(clf, X, Y, description, jobs=1): print '=== Testing classifier {0} ==='.format(description) for class_idx in xrange(Y.shape[1]): print ' > Cross-validating for class {:d}'.format(class_idx) n_samples = X.shape[0] cv = cross_validation.StratifiedKFold(Y[:,class_idx], 3) t_start = time.clock() scores = cross_validation.cross_val_score(clf, X, Y[:,class_idx], cv=cv, score_func=metrics.precision_recall_fscore_support, n_jobs=jobs) t_end = time.clock(); print 'Cross validation time: {:0.3f}s.'.format(t_end-t_start) str_tbl_fmt = '{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}' str_tbl_entry_fmt = '{:0.2f} +/- {:0.2f}' print str_tbl_fmt.format('', 'Precision', 'Recall', 'F1 score', 'Support') for (score_class, lbl) in [(0, 'Negative'), (1, 'Positive')]: mean_precision = scores[:,0,score_class].mean() std_precision = scores[:,0,score_class].std() mean_recall = scores[:,1,score_class].mean() std_recall = scores[:,1,score_class].std() mean_f1_score = scores[:,2,score_class].mean() std_f1_score = scores[:,2,score_class].std() support = scores[:,3,score_class].mean() print str_tbl_fmt.format( lbl, str_tbl_entry_fmt.format(mean_precision, std_precision), str_tbl_entry_fmt.format(mean_recall, std_recall), str_tbl_entry_fmt.format(mean_f1_score, std_f1_score), '{:0.2f}'.format(support)) def test_classifier_multilabel(clf, X, Y, description, jobs=1): print '=== Testing multi-label classifier {0} ==='.format(description) n_samples = X.shape[0] Y_list = [value for value in Y.T] print 'Y_list[0].shape:', Y_list[0].shape, 'len(Y_list):', len(Y_list) cv = cross_validation.StratifiedKFold(Y_list, 3) clf_ml = OneVsRestClassifier(clf) accuracy = (clf_ml.fit(X, Y).predict(X) != Y).sum() print 'Accuracy: {:0.2f}'.format(accuracy) scores = cross_validation.cross_val_score(clf_ml, X, Y_list, cv=cv, score_func=metrics.precision_recall_fscore_support, n_jobs=jobs) str_tbl_fmt = '{:>15s}{:>15s}{:>15s}{:>15s}{:>15s}' str_tbl_entry_fmt = '{:0.2f} +/- {:0.2f}' print str_tbl_fmt.format('', 'Precision', 'Recall', 'F1 score', 'Support') for (score_class, lbl) in [(0, 'Negative'), (1, 'Positive')]: mean_precision = scores[:,0,score_class].mean() std_precision = scores[:,0,score_class].std() mean_recall = scores[:,1,score_class].mean() std_recall = scores[:,1,score_class].std() mean_f1_score = scores[:,2,score_class].mean() std_f1_score = scores[:,2,score_class].std() support = scores[:,3,score_class].mean() print str_tbl_fmt.format( lbl, str_tbl_entry_fmt.format(mean_precision, std_precision), str_tbl_entry_fmt.format(mean_recall, std_recall), str_tbl_entry_fmt.format(mean_f1_score, std_f1_score), '{:0.2f}'.format(support)) def main(): nfeatures = 13 nclasses = 5 ncolumns = nfeatures + nclasses data = np.loadtxt('./feature_db.csv', delimiter=',', usecols=range(ncolumns)) print data, data.shape X = np.hstack((data[:,0:3], data[:,(nfeatures-1):nfeatures])) print 'X.shape:', X.shape Y = data[:,nfeatures:ncolumns] print 'Y.shape:', Y.shape test_classifier(svm.LinearSVC(), X, Y, 'Linear Support Vector Machine', jobs=-1) test_classifier_multilabel(svm.LinearSVC(), X, Y, 'Linear Support Vector Machine') if __name__ =='__main__': main()
我正在使用 Ubuntu 13.04 和 scikit-learn 0.12。我的數據是具有形狀 (98816, 4) 和 (98816, 5) 的兩個數組(X 和 Y)的形式,即每個實例有 4 個特徵和 5 個類標籤。標籤是 1 或 0,表示該類中的成員資格。我是否使用了正確的格式,因為我沒有看到太多關於它的文檔?
分層抽樣意味著在您的 KFold 抽樣中保留了類成員分佈。這在多標籤情況下沒有多大意義,因為您的目標向量每次觀察可能有多個標籤。
在這個意義上,分層有兩種可能的解釋。
為了標籤中至少有一個被填充,給你獨特的標籤。您可以對每個唯一標籤箱執行分層抽樣。
另一種選擇是嘗試對訓練數據進行分段,以使標籤向量分佈的概率質量在折疊上大致相同。例如
import numpy as np np.random.seed(1) y = np.random.randint(0, 2, (5000, 5)) y = y[np.where(y.sum(axis=1) != 0)[0]] def proba_mass_split(y, folds=7): obs, classes = y.shape dist = y.sum(axis=0).astype('float') dist /= dist.sum() index_list = [] fold_dist = np.zeros((folds, classes), dtype='float') for _ in xrange(folds): index_list.append([]) for i in xrange(obs): if i < folds: target_fold = i else: normed_folds = fold_dist.T / fold_dist.sum(axis=1) how_off = normed_folds.T - dist target_fold = np.argmin(np.dot((y[i] - .5).reshape(1, -1), how_off.T)) fold_dist[target_fold] += y[i] index_list[target_fold].append(i) print("Fold distributions are") print(fold_dist) return index_list if __name__ == '__main__': proba_mass_split(y)
為了獲得正常的訓練,測試 KFold 產生的索引,你想用 np.arange(y.shape[0]) 將其重寫為每個索引的 np.setdiff1d,然後用iter方法將其包裝在一個類中。