Probability

怎麼磷(D;θ)=P(D|θ)磷(D;θ)=磷(D|θ)P(D;theta) = P(D|theta)?

  • February 26, 2019

我最近開始閱讀最大似然估計和貝葉斯統計。我知道給定一個統計模型 (X,(Pθ)) 在哪裡, θ 屬於大參數空間 Θ , 之間的 KL 散度 PθPθ ( θ 是我們想要找到的真實參數)被最小化為 θ 最大化 ni=1pθ(Xi) . 假設事件是獨立且同分佈的,這相當於最大化聯合概率 P[X1=x1,X2=x2,,Xn=xn]. (獨立性假設允許將其等同於單個元素的乘積)

貝葉斯方法解釋了對分佈的先驗信念 θ , P(θ) 並最大化 P(θ|X) ,根據貝葉斯規則相當於最大化, P(X|θ)P(θ)/P(X) . 我理解這部分的事情。在此之後, P(X|θ) 被稱為“可能性”並被替換為 P[X1=x1,X2=x2,,Xn=xn] ,這只是 X 在分佈中的個體概率的乘積 Pθ . 這是否意味著 P[X1=x1,X2=x2,,Xn=xn] 實際上是 Pθ[X1=x1,X2=x2,,Xn=xn] , 即給定的概率 θ , 或類似的東西 ?

我不太擅長概率和分佈,我的理解是對象 P(X|θ) 稱為條件概率,對象 P[X1=x1,X2=x2,,Xn=xn] (等於 ni=1pθ(Xi) 通過獨立性)稱為聯合概率,它們是非常不同的東西。我見過作者使用 P(X;θ) 對於某些情況下的最大似然聯合概率。我很困惑為什麼聯合概率和條件概率被認為是相等的?

這裡有幾個問題:

  1. 在經典統計中,所有使用的分佈都隱含地θ ,這被認為是“未知常數”。在貝葉斯分析中,沒有未知常數之類的東西(任何未知都被視為隨機變量),而是我們對所有概率語句使用顯式條件語句。
  2. 這意味著,在貝葉斯分析中,採樣密度 P(X|θ) 是對象 Pθ(X) 你在經典案例中提到的。(似然函數只是將採樣密度視為參數的函數 θX=x 被認為是固定的。)這也意味著密度 P(X) 在貝葉斯分析中不是θ . 它是數據的邊際密度,由下式給出:P(X)=ΘP(X|θ)P(θ) dθ.
    在您的問題中有幾個地方,您對條件語句有些草率,最終您會模棱兩可地說明數據的條件分佈和邊際分佈。這在經典統計中不是什麼大問題(因為所有概率語句都隱含地以參數為條件),但它會在貝葉斯分析中給您帶來麻煩。
  3. 符號 P(X;θ) 通常僅在經典統計中使用,並且用於表示與 Pθ(X) —即,它隱含地是給定參數的數據的條件密度。使用這種符號表示聯合密度是不尋常的(並且令人困惑)。
  4. 使參數的後驗分佈最大化的貝葉斯方法是一種稱為最大後驗 (MAP) 估計的點估計方法。這是一種點估計方法,可為您提供單點估計。您應該記住,貝葉斯通常還關注保留整個後驗密度,因為這包含比 MAP 估計器更多的信息。

引用自:https://stats.stackexchange.com/questions/394504