Probability

具有正態均值的正態隨機變量的邊際分佈

  • October 16, 2018

我有一個關於計算兩個正態分佈的條件密度的問題。我有隨機變量 $ X|M \sim \text{N}(M,\sigma^2) $ 和 $ M \sim \text{N}(\theta, s^2) $ ,條件和邊際密度由下式給出:

$$ \begin{equation} \begin{aligned} f(x|m) &= \frac{1}{\sigma \sqrt{2\pi}} \cdot \exp \Big( -\frac{1}{2} \Big( \frac{x-m}{\sigma} \Big)^2 \Big), \[10pt] f(m) &= \frac{1}{s \sqrt{2\pi}} \cdot \exp \Big( - \frac{1}{2} \Big( \frac{m-\theta}{s} \Big)^2 \Big). \end{aligned} \end{equation} $$

我想知道邊際分佈 $ X $ . 我已將上述密度相乘以形成聯合密度,但我無法成功整合結果以獲得感興趣的邊際密度。我的直覺告訴我,這是一個參數不同的正態分佈,但我無法證明。

您的直覺是正確的-具有正態平均值的正態隨機變量的邊際分佈確實是正態的。為了看到這一點,我們首先通過完成平方將聯合分佈重新構建為正態密度的乘積:

$$ \begin{equation} \begin{aligned} f(x,m) &= f(x|m) f(m) \[10pt] &= \frac{1}{2\pi \sigma s} \cdot \exp \Big( -\frac{1}{2} \Big[ \Big( \frac{x-m}{\sigma} \Big)^2 + \Big( \frac{m-\theta}{s} \Big)^2 \Big] \Big) \[10pt] &= \frac{1}{2\pi \sigma s} \cdot \exp \Big( -\frac{1}{2} \Big[ \Big( \frac{1}{\sigma^2}+\frac{1}{s^2} \Big) m^2 -2 \Big( \frac{x}{\sigma^2} + \frac{\theta}{s^2} \Big) m + \Big( \frac{x^2}{\sigma^2} + \frac{\theta^2}{s^2} \Big) \Big] \Big) \[10pt] &= \frac{1}{2\pi \sigma s} \cdot \exp \Big( -\frac{1}{2 \sigma^2 s^2} \Big[ (s^2+\sigma^2) m^2 -2 (x s^2+ \theta \sigma^2) m + (x^2 s^2+ \theta^2 \sigma^2) \Big] \Big) \[10pt] &= \frac{1}{2\pi \sigma s} \cdot \exp \Big( - \frac{s^2+\sigma^2}{2 \sigma^2 s^2} \Big[ m^2 -2 \cdot \frac{x s^2 + \theta \sigma^2}{s^2+\sigma^2} \cdot m + \frac{x^2 s^2 + \theta^2 \sigma^2}{s^2+\sigma^2} \Big] \Big) \[10pt] &= \frac{1}{2\pi \sigma s} \cdot \exp \Big( - \frac{s^2+\sigma^2}{2 \sigma^2 s^2} \Big( m - \frac{x s^2 + \theta \sigma^2}{s^2+\sigma^2} \Big)^2 \Big) \[6pt] &\quad \quad \quad \text{ } \times \exp \Big( \frac{(x s^2 + \theta \sigma^2)^2}{2 \sigma^2 s^2 (s^2+\sigma^2)} - \frac{x^2 s^2 + \theta^2 \sigma^2}{2 \sigma^2 s^2} \Big) \[10pt] &= \frac{1}{2\pi \sigma s} \cdot \exp \Big( - \frac{s^2+\sigma^2}{2 \sigma^2 s^2} \Big( m - \frac{x s^2 + \theta \sigma^2}{s^2+\sigma^2} \Big)^2 \Big) \cdot \exp \Big( -\frac{1}{2} \frac{(x-\theta)^2}{s^2+\sigma^2} \Big) \[10pt] &= \sqrt{\frac{s^2+\sigma^2}{2\pi \sigma^2 s^2}} \cdot \exp \Big( - \frac{s^2+\sigma^2}{2 \sigma^2 s^2} \Big( m - \frac{x s^2 + \theta \sigma^2}{s^2+\sigma^2} \Big)^2 \Big) \[6pt] &\quad \times \sqrt{\frac{1}{2\pi (s^2+\sigma^2)}} \cdot \exp \Big( -\frac{1}{2} \frac{(x-\theta)^2}{s^2+\sigma^2} \Big) \[10pt] &= \text{N} \Big( m \Big| \frac{xs^2+\theta\sigma^2}{s^2+\sigma^2}, \frac{s^2 \sigma^2}{s^2+\sigma^2} \Big) \cdot \text{N}(x|\theta, s^2+\sigma^2). \end{aligned} \end{equation} $$

然後我們整合出來 $ m $ 獲得邊際密度 $ f(x) = \text{N}(x|\theta, s^2+\sigma^2) $ . 從這個練習中我們看到 $ X \sim \text{N}(\theta, s^2+\sigma^2) $ .

引用自:https://stats.stackexchange.com/questions/372062

comments powered by Disqus