Regression

為什麼我們在線性回歸中建模噪聲而不是邏輯回歸?

  • August 4, 2020

線性回歸的典型概率解釋是 y 等於 θTx ,加上一個高斯噪聲隨機變量 ϵ .

然而,在標準邏輯回歸中,我們不考慮噪聲(例如隨機位翻轉概率 p ) 標籤 y . 這是為什麼?

簡短的回答:我們這樣做,只是隱含地。


以下是一種可能更具啟發性的看待事物的方式。

在普通最小二乘法中,我們可以考慮不將誤差或噪聲建模為 N(0,σ2) 分佈,但我們將觀察建模為 N(xβ,σ2) 分散式。

(當然,這完全是一回事,只是從兩種不同的角度來看而已。)

現在邏輯回歸的類似陳述變得清晰:在這裡,我們將觀察建模為具有參數的伯努利分佈 p(x)=11+exβ .

如果我們願意,我們可以翻轉最後一種思考方式:我們確實可以說我們正在對邏輯回歸中的錯誤進行建模。即,我們將它們建模為“伯努利分佈變量與參數之間的差異 p(x)p(x) 本身”。

這只是非常笨拙,而且這個分佈沒有名字,加上這裡的錯誤取決於我們的自變量 x (與 OLS 中的同方差假設相反,其中誤差與 x ),所以這種看待事物的方式並不經常使用。

引用自:https://stats.stackexchange.com/questions/481391