Time-Series
分析 ACF 和 PACF 圖
我想看看我是否在分析我的 ACF 和 PACF 圖的正確軌道上:
背景:(參考:Philip Hans Franses,1998)
- 由於 ACF 和 PACF 都顯示出重要的價值,我假設 ARMA 模型將滿足我的需求
- ACF可以用來估計MA-part,即q-value,PACF可以用來估計AR-part,即p-value
- 為了估計模型順序,我查看 a.) ACF 值是否充分消失,b.) ACF 信號是否過度差異以及 c.) ACF 和 PACF 是否在某些滯後處顯示任何顯著且易於解釋的峰值
- ACF 和 PACF 可能不僅建議一種模型,而且在考慮其他診斷工具後我需要從中選擇許多模型
考慮到這一點,我會繼續說最明顯的模型似乎是 ARMA (4,2),因為 ACF 值在滯後 4 處消失,而 PACF 在 1 和 2 處顯示峰值。
另一種分析方法是 ARMA(2,1),因為我看到我的 PACF 中有兩個顯著峰值,我的 ACF 中有一個顯著峰值(之後值從低得多的點 (0.4) 開始消失)。
查看我的樣本內預測結果(使用簡單的平均絕對百分比誤差)ARMA (2,1) 提供的結果要好於 ARMA(4,2)。所以我使用 ARMA(2,1)!
你能證實我分析 ACF 和 PACF 圖的方法和發現嗎?
幫助表示讚賞!
編輯:
描述性統計:
count 252.000000 mean 29.576151 std 7.817171 min -0.920000 25% 26.877500 50% 30.910000 75% 34.915000 max 47.430000 Skewness of endog_var: [-1.35798399] Kurtsosis of endog_var: [ 5.4917757] Augmented Dickey-Fuller Test for endog_var: (-3.76140904255411, 0.0033277703768345287, {'5%': -2.8696473721448728, '1%': -3.4487489051519011, '10%': -2.5710891239349585}
時間序列:
殘差 (ARMA (2.1):
殘差的 ACF/PACF:
編輯二:
數據:
14.37561 23.95561 25.41561 13.88561 23.31561 33.12561 35.30561 35.78561 37.21561 35.23561 37.34561 38.28561 39.03561 36.34561 39.08561 39.34561 38.80561 40.10561 34.13561 35.42561 27.29561 34.13561 39.89561 47.77561 40.57561 36.15561 33.66561 30.97561 24.90561 23.41561 0.31561 8.45561 37.36561 33.40561 13.97561 11.62561 35.07561 36.15561 37.09561 36.95561 37.85561 32.31561 35.41561 36.35561 37.34561 35.90561 37.40561 36.44561 37.37561 36.16561 35.24561 38.47561 39.18561 39.61561 29.55561 35.50561 38.05561 40.32561 44.39561 37.65561 46.27561 29.41561 40.41561 33.44561 37.04561 35.34561 25.24561 30.23561 15.40561 26.79561 35.38561 40.22561 43.14561 36.96561 41.93561 11.30561 6.87561 32.92561 34.54561 38.27561 36.40561 25.44561 37.26561 26.39561 31.13561 35.90561 38.41561 33.66561 33.16561 31.96561 30.34561 37.77561 32.25561 33.21561 38.37561 36.63561 40.78561 35.60561 36.37561 34.42561 42.67561 33.40561 31.49561 24.81561 23.82561 37.34561 30.73561 21.04561 18.20561 27.36561 18.49561 25.41561 27.92561 29.42561 25.91561 27.56561 28.69561 29.89561 31.47561 29.34561 25.35561 21.98561 28.61561 33.87561 20.07561 27.36561 26.48561 20.37561 22.33561 28.52561 21.24561 10.77561 18.69561 30.19561 33.89561 29.81561 27.55561 22.37561 20.32561 22.43561 31.89561 32.10561 27.67561 36.93561 36.51561 26.96561 21.27561 34.68561 34.13561 35.80561 25.38561 33.42561 9.28561 8.70561 30.36561 30.29561 29.56561 28.41561 33.40561 18.47561 16.48561 18.51561 26.35561 25.40561 19.92561 21.26561 10.90561 32.71561 26.71561 29.99561 28.87561 28.55561 14.07561 10.97561 24.92561 26.40561 21.40561 29.08561 30.18561 30.27561 16.15561 21.96561 32.29561 29.57561 30.24561 30.82561 28.83561 27.30561 26.53561 28.39561 29.76561 29.50561 31.81561 34.79561 24.14561 31.34561 33.14561 35.04561 33.20561 33.53561 35.28561 29.84561 35.02561 33.63561 35.65561 35.73561 35.35561 37.18561 27.38561 34.40561 33.69561 29.05561 34.55561 31.76561 30.91561 34.70561 35.87561 28.31561 30.39561 28.03561 30.72561 30.57561 23.93561 25.11561 32.15561 26.74561 28.76561 32.49561 34.79561 27.90561 33.05561 29.50561 31.67561 34.36561 36.88561 32.31561 26.24561 26.66561 33.59561 37.64561 38.26561 36.20561 33.27561 29.94561 29.19561 27.41561 37.24561 36.26561 30.84561 35.46561 32.24561 31.44561 33.40561 30.71561 33.03561 36.43561 33.44561 22.32561 18.65561 31.97561 27.00561 29.66561 30.76561 33.44561 29.19561 12.32561 33.41561 37.13561 33.43561 37.35561 40.17561 29.38561 19.70561 35.44561 30.48561 30.72561 16.09561 30.82561 30.55561 34.38561 35.45561 34.87561 33.78561 33.87561 29.83561 26.35561 26.44561 28.72561 30.85561 28.18561 12.18561 31.82561 18.01561 27.57561 29.38561 20.32561 22.36561 34.01561 34.40561 20.23561 -0.57439 9.87561 29.55561 31.01561 30.00561 28.12561 13.47561 7.42561 22.01561 20.38561 27.57561 31.54561 29.90561 16.40561 21.27561 26.22561 31.47561 31.11561 32.97561 32.34561 29.36561 32.40561 31.16561 32.05561 31.78561 32.34561 33.87561 31.80561 29.90561 30.09561 32.36561 28.15561 26.30561 15.32561 31.03561 33.47561 33.44561 33.71561 28.30561 12.70561 10.17561 43.96561 9.58561 35.38561 33.82561 41.37561 33.40561 33.64561 20.30561 27.85561 29.01561 32.36561 28.33561 29.90561 27.19561 0.39561 8.40561 0.24561 11.87561 29.15561 20.40561 0.42561 29.29561 23.39561 19.36561
查看您的 ACF 和 PACF 在您的分析的完整上下文中也很有用。你的 Ljung-Box Q 統計量;p 值;置信區間、ACF 和 PACF 應一起查看。例如這裡的 Q 測試:
acf, ci, Q, pvalue = tsa.acf(res1.resid, nlags=4,confint=95, qstat=True, unbiased=True)
在這裡 - 我們的自相關 Q 檢驗是對我們的圖形解釋的整體直覺檢查。
Statsmodels 中時間序列分析的草稿說明:http: //conference.scipy.org/proceedings/scipy2011/pdfs/statsmodels.pdf